Correction to the Casimir force due to the anomalous skin effect
نویسندگان
چکیده
The surface impedance approach is discussed in connection with the precise calculation of the Casimir force between metallic plates. It allows us to take into account the nonlocal connection between the current density and electric field inside of metals. In general, a material has to be described by two impedances Zssv ,qd and Zpsv ,qd corresponding to two different polarization states. In contrast with the approximate Leontovich impedance they depend not only on frequency v but also on the wave vector along the plate q. In this paper only the nonlocal effects happening at frequencies v,vp (plasma frequency) are analyzed. We refer to all of them as the anomalous skin effect. The impedances are calculated for the propagating and evanescent fields in the Boltzmann approximation. It is found that Zp significantly deviates from the local impedance as a result of the Thomas-Fermi screening. The nonlocal correction to the Casimir force is calculated at zero temperature. This correction is small but observable at small separations between bodies. The same theory can be used to find more significant nonlocal contribution at v,vp due to the plasmon excitation.
منابع مشابه
NUMERICAL ANALYSIS OF THE CASIMIR EFFECT DUE TO A SCALAR FIELD
In this paper, we study the Casimir effect of a scalar field with Dirichlet boundary condition in some certain topologies. By numerical analysis we show that Casimir energy is a shape-dependent quantity. We also obtain the phase transition in different topologies in which the Casimir force changes from attractive to repulsive or vice versa. eararqr
متن کاملDynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping
In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...
متن کاملElectromechanical Performance of NEMS Actuator Fabricated from Nanowire under quantum vacuum fluctuations using GDQ and MVIM
The Casimir attraction can significantly interfere the physical response of nanoactuators. The intensity of the Casimir force depends on the geometries of interacting bodies. The present paper is dedicated to model the influence of the Casimir attraction on the electrostatic stability of nanoactuators made of cylindrical conductive nanowire/nanotube. An asymptotic solution, based on path-integr...
متن کاملSUBSTRATUM RADIATION AND CASIMIR EFFECT
A heuristic way to calculate the approximate value of the Casimir force is introduced
متن کاملAnomalous temperature dependence of the Casimir force for thin metal films.
Within the framework of the Drude dispersive model, we predict an unusual nonmonotonic temperature dependence of the Casimir force for thin metal films. For certain conditions, this force decreases with temperature due to the decrease of the metallic conductivity, whereas the force increases at high temperatures due to the increase of the thermal radiation pressure. We consider the attraction o...
متن کامل